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DISPELLING THE MYTH OF THE FLOATING-POINT
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There are many fallacies and urban 
myths that persist well beyond their 
shelf-life. For example, it is said that a 
mattress may double its weight with 
dust mites after ten years, and that the 
Twinkie possesses a shelf-life longer 
than that of the Universe. Another is 
that the floating-point number format is 
a prerequisite for audio quality. 

It is not only the credulous who fall prey 
to these fictions - if a myth is repeated 
enough times, it accrues a veneer of 
credibility that can fool any of us. It is the 
duty of scientists, engineers, and all people 
of good character and common sense to 
stand up and fight this tide of perfidious 
bilge. 

For my part, I intend to put to rest all three 
of the above apocrypha beginning with the 
most easily dispatched

The myth of floating-point numbers 
It is widely believed that floating-point is 
a byword for good quality in digital audio 
systems, or worse, a guarantee of it. In fact, 
neither of these assertions is true.

Floating-point numbers are like the 
scientific notation on calculators; they 
have a mantissa – the number part, and an 
exponent, which is a multiplier used to scale 
the number part. For example, 1.414 x 103 
is a floating-point number with a mantissa 
of 1.414 and an exponent of 3. The 
attraction of this form is that it can be used 
to express numbers over a much larger 
range than would be possible if the same 
number of digits were used in a fixed-point 
(integer) number. They are the exuberant 
swashbucklers of the number universe, 
one minute spanning the interstellar 
vastness and the next swooping down 
into the sub-atomic cracks and fissures of 
particle physics. And if floating-points are 
the numeric super heroes then fixed-point 
numbers are the Clark Kents, rooted and 

reliable, fastidiously representing numbers 
within their compass and never venturing 
into the infinite darkness beyond.

So what impact does the number format 
have on digital audio systems? We must 
consider two properties; resolution and 
dynamic range.

Resolution or numerical precision is 
determined by word length; as it increases, 
the resolution improves. Dynamic range 
is also determined by word length, but 
may also be dramatically extended in 
the floating-point format by the choice 
of exponent. Compare, for example, a 
24-bit fixed-point number which has a 
dynamic range of about 144dB, to a 24-bit 
floating-point number where eight bits are 
designated as an exponent, which has a 
dynamic range of over 1500dB. 

How do we choose the right number 
format for a digital audio system? Well, 
the dynamic range and resolution needs 
to be sufficiently large to allow faithful 
representation of all audio signals that 
may be encountered. The table in Figure 1 
shows the dynamic range of sounds in the 
real world. SPL (sound pressure level) is a 
logarithmic measurement of sound levels 
where 0dB represents the threshold of 
human hearing. 

While the narrative requirements of most 
music, sport and drama do not demand 
the uncompressed reproduction of a jet 
engine’s roar at close quarters followed by 
gently rustling leaves, (and if it did, would 
render the audience physical pain and 
possible hearing damage), the 24-bit fixed-
point format would suffice. But does this 
make it a suitable format for digital audio 
systems? The answer is an emphatic no 
and the reason is that processing audio can 
introduce errors, which are manifested as 
audible noise, unless additional resolution is 
provided. Note, it is resolution, not dynamic 
range that is needed. To illustrate this, let’s 
take a look at the most important audio 
processes.

Gain
Applying gain to a digital audio signal 
simply requires a multiplication; multiply by 
a bigger number to make the audio louder, 
or a smaller one to make it quieter. Easy! 
The problem comes when the result is a 
number that doesn’t fit neatly into number 
of digits you have to represent it. There 
is usually an extra bit that you have to 
get rid of, known as truncation. How you 
do this has a big impact on the quality of 
the result. You can choose to round up 
or down but this introduces unpleasant 
quantisation noise.  A smarter solution is 
to add a random number to the left-over 
bits and then round up or down. This 
fiendishly counter-intuitive idea is known as 

FIGURE 1 - REAL WORLD SOUND LEVELS

Calm breathing, or gently rustling leaves 10 dB
Normal conversation 40 – 60 dB
Passenger car at 10 metres 60 – 80 dB
Hearing damage (long term exposure) 85dB
Vuvuzela 120 dB
Level of sound that can cause physical pain 130 dB
Jet engine at 30 metres 150 dB
M1 Rifle at 1 metre 168 dB
Stun Grenades 170 – 180 dB
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dithering and makes low-amplitude signals 
sound much better. The price – there’s 
always a cost - is that the number format 
is required to carry additional resolution in 
the form of ‘foot room’ bits to dither against. 
Floating-point does not help as there is 
no requirement for an extended dynamic 
range. In fact, any bits given over to 
carrying an exponent are serving no useful 
purpose and would be better deployed in 
the mantissa, extending resolution.

Mixing
If a number of signals are to be mixed 
(added), then it is a good idea to provide 
some additional ‘head room’ bits which 
extend the dynamic range during the 
calculation, but this does not need to be 
very large. If a floating-point number were 
used to generate intermediate headroom, 
as the mantissa is scaled up, foot room bits 
are lost, mucking up any subsequent dither 
calculation and introducing noise. Hence, 
in mixing calculations, the floating-point 
format is, if anything, a liability.

Equalisation
EQ is a more complex case. The ubiquitous 
biquad calculation used in digital filters 
may be arranged in different forms to 
make it more convenient for processing. 
For example, the popular direct form 
II is used to reduce the number of 
computations in systems where DSP 
cycles are at a premium. The quid pro 
quo is that the intermediate calculations 
have large dynamic range and demand a 
floating-point format (at least it does in a 
system constrained to a fixed word length 
such as a DSP chip). In other words, the 
requirement for floating-point comes as a 
consequence of cost-cutting rather than 
the pursuit of quality.

The problem that arises from the use of 
a rigid floating-point format (for example, 
that found in ADSP SHARC chips) is that 
the resolution is fixed by DSP architecture, 

not by the requirements of the calculation. 
Most of the time, it is adequate, but there 
are certain filter configurations where it is 
not. Graph 1 shows a plot of THD+N for a 
30dB notch filter at 50Hz executed in 40-
bit floating-point (direct form II). It is quite 
clear that there is a significant elevation of 
the noise floor due to the resolution limit of 
the floating-point format. 

A more quality-minded approach is to first 
decide what level of performance is desired 
and then to select the number format to 
achieve it. In the case of EQ, a very high 
level of resolution is needed in parts of the 
calculation in order to avoid generating the 
kind of noise evident in Graph 1. A flexible 
architecture, such as Calrec’s Bluefin2, 
allows word length to be increased to 
precisely match the required performance.

Graph 2 (over the page) shows the results 
of the same filter in a Calrec Apollo 
console, with Bluefin2 DSP. The high word-
length fixed-point approach has reduced 
the noise floor of the filter to more or less 
that of the test set.

There is a secondary effect resulting 
from the lack of resolution that impairs 
filter performance; you can’t add very 
big numbers to very small ones. It simply 
doesn’t work! Let me demonstrate this with 
an extreme case. 

Imagine that you have adopted a 7-digit 
floating-point format with 4-digit mantissa 
and 3-digit exponent. You can represent 
the number one million by writing it as 
1000 x 103. Now, add the number 999 
to this. You should get 1,000999, but 
since you have only 4 digits available, the 
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Graph 1. THD + N for a 30dB notch filter at 50 Hz using 40-bit floating point. (Blue trace is THD+N)
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result you end up with is 1000 x 103 – the 
number you first started with! Adding 999 
has had no effect on the result. The floating 
point system has failed because it lacked 
resolution!

It is an inescapable consequence of the 
format that as floating-point numbers whiz 
around the numerical firmament, they 
deposit little piles of arithmetic ejectamenta 
in their wake. In the interest of balance, 
I would point out that the errors are, on 
the whole, quite small, and that for the 
majority of calculations, they are irrelevant, 
especially when compared to the more 
serious threats to quality along the route 
from microphone to living room. But if we 
choose to make numerical precision an 
aim (which we should) then we ought to 
do it properly and not let the want of a little 
analysis be a barrier to good science.

So that’s the floating point myth dealt 
with, what about the mattress doubling 
its weight? Well, I’ve weighed mine and 
it hasn’t. And the everlasting Twinkies? 
Actually, come to think of it, that might 
actually be true.
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Graph 2. THD + N for a 30dB notch filter at 50 Hz (fixed point). The blue trace is THD + N of Calrec’s 
Bluefin2 processing. The red trace is THD + N of the test set looped output to input.


