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ABSTRACT 

Multidimensional-adaptive audio coding algorithms can adapt multiple performance measures to 

the demands of different audio applications in real-time. Depending on the transmission or storage 

environment, audio processing applications require forms of error control to maintain acceptable 

audio quality. By definition, multidimensional-adaptive audio coding utilizes numerous error 

detection, correction and concealment techniques. However, such techniques also have implications 

for other relevant performance measurements, such as coded bit-rate and computational 

complexity. This paper discusses the signal-processing tools used by a multidimensional-adaptive 

audio coding algorithm to achieve varying levels of error control while the fundamental structure of 

the algorithm is also varying. The effects and trade-offs on other coding performance measures will 

also be discussed. 

1. Introduction 

 

The cognitive ability of a multidimensional-adaptive audio coding algorithm provides the ability to 

adapt to the presence of bit and packet errors. Whilst other conventional audio coding algorithms 

can utilize error control tools, these schemes typically have coarse-grained control and 

predetermined error control characteristics that cannot be easily altered or shaped. A 

multidimensional-adaptive audio coding algorithm can modify the error control tools in a dynamic 

manner, according to external measures of channel noise and other system parameters. However, 

due to the multidimensional nature of the adaptation, such a codec also needs to be aware of how 

the choice of error control strategy affects other performance goals, such as coded bit-rate, 

algorithmic latency, perceptual audio quality and computational complexity. 

This paper describes a novel coding scheme that can adapt its audio coding functions and algorithm 

characteristics to achieve the optimal level of error control for a particular environment. This is 

achieved by providing the encoder with parameters describing the error characteristics of the 

transmission channel. In addition to transmission error characteristics, the multidimensional audio 

coding algorithm is capable of cognitively adapting to achieve performance goals such as 

computational complexity, algorithmic latency and bit rate. 

The concept of a multidimensional audio coding algorithm is discussed in Section 2. Section 3 

describes the underlying robustness of this algorithm. Section 4 provides a description of the 

intelligent-agent based adaptive control scheme and the performance achieved by the resulting 

multidimensional-adaptive audio coding algorithm. A conclusion is provided in Section 5 while 

further work is discussed in Section 6. 
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2. What is a Multidimensional-Adaptive Audio Coding Algorithm? 

A multidimensional audio coding algorithm [1] is capable of functioning over a wide range of 

operating points, e.g. battery life, latency, bit rate and quality. This algorithm possesses a range of 

tools with different latency, complexity and quality attributes. A number of tools can be selected to 

perform the tasks of predictive coding, quantization, sub-banding, channel coding, error correction 

coding and entropy coding (see Figure 1). It is possible to dynamically modify the choice of coding 

tools at any given time, but the selected coding tools must be communicated with the decoder. 

Applications will require the configuration of this algorithm to be modified over time to achieve 

varying performance goals. This configuration can be complex given the high number of possible tool 

combinations and their varying impact on the system. The algorithm will also behave differently 

depending upon the system and hardware platform on which it operates and the task it is 

performing at any given moment. This results in an algorithm that is difficult to characterize and 

control. An adaptive control mechanism is required to optimally select the appropriate set of coding 

tools at any given instant using system performance measures - thereby leading to the concept of a 

multidimensional-adaptive audio coding algorithm. 

 

 

(a) encoder 
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(b) Decoder  

Figure 1: A multidimensional audio coding algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 



White Paper  

 

5 | P a g e                                             © A P T  L I C E N S I N G  L T D  

 

Table 1: Error resilient properties of basic multidimensional algorithm structures 

Prediction  Quantization  Description  

None  

  

Scalar 

Uniform  

  

All audio frames can be decoded in isolation, does not allow 

any propagation of errors. Suitable for very noisy environments  

Vector Non-

Uniform  

  

  

All audio frames can be decoded in isolation, adaptive vector 

quantization limits the propagation of errors. Suitable for 

moderately noisy environments with low burst error rates. 

SS-LMS  Vector Non-

Uniform  

  

Predictive coding utilizing sign-sign LMS limits the propagation 

of errors. Suitable for low error rates with low burst error rates.  

Adaptive  

SS-LMS  

Vector Non-

Uniform  

  

Adaptive prediction is sensitive to errors as it has less 

opportunity  

to compensate for errors. Suitable for low noise transmission 

only.  

  

3. Codec Robustness 

A number of steps have been undertaken to improve the error robustness of the multidimensional  

3.1 Error Correction  

A novel feature of the proposed multidimensional audio coding algorithm is the ability to implement 

several error correction techniques on a frame basis. The syntax over which error 

detection/correction operates and the error correction properties are both variable. This provides us 

with a fine-grain scalable error correction scheme that can be applied in a time-varying manner to 

the transmission channel, such that the error correction used for any given frame and channel noise 

characteristics can be chosen to optimally reduce errors. 

The error correction schemes provided by the multidimensional audio coding algorithm include: 

• Extended Binary Golay Code [4] - Encodes 12 bits of data into a 24-bit code allowing three 

bits of error to be corrected and four bits of error to be detected. This is a fast and low 

complexity error correction scheme.  
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• Interleaved Extended Binary Golay Code - Interleaving of multiple Golay codes to form a 

larger code word. This disperses burst errors across multiple codes such that the effective 

error correcting capabilities are increased.  

• Reed-Solomon [3] - A byte-oriented Reed-Solomon code with a variable redundancy. The 

block size can be reduced from a maximum of 255 bytes using block shortening. This is a 

relatively complex scheme and requires buffering of large blocks of data.  

 

3.2 Data Payload Robustness 

The use of error detection over the data field of audio frames is detrimental to audio quality, i.e. if 

an entire frame is discarded the resulting perceived loss in quality will be more significant than the 

corruption of a small number of audio samples. A number of basic structures can be employed by 

the multidimensional audio coder to facilitate error resilience to different degrees (see Table 2). 

Golomb-Rice coding can be used to reduce the bit rate of the multidimensional audio coding 

algorithm. However, variable length codes (VLCs) are prone to error propagation, typically leading to 

large quality distortion and subsequent packet loss. 

A derivative of EREC [2] has been developed to allow the VLCs to be packed into a fixed length 

structure. This limits the degree to which errors can propagate thereby reducing distortion and 

packet loss when using Golomb-Rice coding, but this will increase the computational effort of the 

algorithm. The EREC scheme requires the width and number of EREC blocks to be transmitted with 

each audio frame in the header. 

3.3 Stream Syntax and Decoder Stability 

(a) Parameter Frame 

(b) Audio Frame 

Figure 2: Example of frame syntax structure 
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Ensuring that the stream syntax is relatively insensitive to corruption is a fundamental first step to 

ensuring that the decoder can synchronize with the incoming data stream and decode sufficient 

information for audio playback. Once synchronized with the incoming data stream it is imperative 

that the decoder can safely process corrupted data such that the algorithm's stability is not 

compromised. 

The multidimensional audio coding algorithm supports four basic packet types, two of which are 

detailed in figure 3.3. In order of perceptual importance these are: Parameter Frames, Audio Frames, 

Padding Frames and User Data Frames. To aid in the stream parsing process all packets begin at a 

byte-aligned position. 

The Parameter Frame (PF) is used to describe the algorithm structure at a high-level. It contains 

definitions for all of the selected coding tools that must be applied to all subsequent audio frames. 

All audio frame data subsequent to a corrupted PF must be discarded as the correctness of the 

multidimensional decoder configuration cannot be relied upon. Therefore it is imperative that this 

packet is adequately protected. 

Padding Frames are used to increase the bit rate under certain conditions of CBR rate control. The 

packet consists of an 8-bit synchronization marker, 32-bit length code, a variable number of padding 

bytes and a terminating byte. The padding bytes are are all equivalent to the value 255 whilst the 

terminating byte is the value 1. The length code and the padding data values provide a mechanism 

to verify the integrity of the padding frame. This ensures that a corrupted length code will not result 

in otherwise valid data being discarded and/or a loss of decoder stability. 

User Data Frames are very similar to Padding Frames. However, the arbitrary nature of the user data 

payload does not provide a redundancy mechanism for verifying the frame length as in the case of 

Padding Frames. In order to improve stability and provide a means to determine the end of a frame 

(a) a maximum frame length of 256 bytes is enforced and (b) a unique 4-byte frame termination 

string is used. 

The Audio Frame contains a condensed header providing an 8-bit synchronization marker, 8-bit 

bitpool and a 12-bit block size. All compressed audio data is transported using this packet type, 

therefore loss of these packets will require an audio concealment mechanism. The data payload is 

variable in terms of its content and length. 

A number of measures are used to improve error resilience of the packetized stream structure.  

• The decoder uses the first one to four bytes of all packets to determine the packet type. 
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These packet type markers form a byte-aligned static synchronization marker. It is important 

a decoder does not immediately discard a corrupted synchronization marker as this can lead 

to significant packet loss.  

• The validity of each packet header must be verified through the use of a cyclic redundancy 

check (CRC). This allows errors to be detected and the packet to be discarded.  

• A state machine is used to indicate the corruption status of the decoder. This allows the 

decoder to intelligently explore the validity of a packet header, depending upon the validity 

of past frame headers. For example, if the past few frame headers were successfully 

decoded the decoder will have a high confidence in the position of an upcoming 

synchronization marker and a small number of invalid bits in the synchronization marker can 

be ignored.  

• PFs are periodically re-transmitted. Increasing the rate of transmission improves the 

probability of successfully decoding the PF and considerably reduces packet loss of audio 

frames.  

• Each PF contains a timestamp indicating the PCM sample index of the left/mono channel. 

The decoder maintains an independent timestamp for every successfully decoded audio 

frame. In the case of audio frame loss the decoder can use the timestamps to re-synchronize 

the stream. For this purpose silence is used as an error concealment strategy.  

 

4. Adaptive Control Scheme 

A user wishing to utilize a multidimensional audio coding algorithm must determine the optimal 

configuration of that algorithm given a wide range of coding tools and operating environments. This 

can be a significant challenge, particularly in a system where complex external factors affect the 

performance of the audio compression system. An example of external environmental changes 

includes: 

• A microprocessor in an embedded device running other tasks can experience processor, 

cache and memory performance variations over time that effect the efficiency of coding 

tools.  

• The multidimensional audio coding algorithm can operate on different processor 

architectures, resulting in varying performance of coding tools based on hardware 

capabilities.  

• A transmission channel can periodically be subjected to noise due to an adverse 

environment.  

• The system enters a low power state to prolong the battery life.  



White Paper  

 

9 | P a g e                                             © A P T  L I C E N S I N G  L T D  

 

 

We consider the system in which the multidimensional audio coding algorithm operates to be a 

black box. This circumvents the need to obtain accurate models of such complex systems through 

mathematical modeling. This requires us to utilize a learning algorithm that can adapt to an 

unknown environment. Such an adaptive and cognitive audio compressional algorithm can be 

implemented within any system or processor architecture and will not require tuning to achieve 

optimal performance. This leads to additional benefits in reducing engineering time when 

implementing the multidimensional-adaptive audio coding algorithm. 

The management and control of the multidimensional audio coding algorithm must accept a range 

of widely varying performance goals within a system that is unknown. This adaptation is achieved 

using the concept of intelligent agents. These entities recognize the performance goals that a user 

requires and understand that they can perform a number of actions to achieve those goals. Each 

agent observes the environment that it operates within and the effect of actions that it exerts on 

that environment. The intelligent agent acts as an autonomous entity that continually adapts to the 

varying environment and goals. 

4.1 Fuzzy Logic 

Fuzzy logic [5] is a multi-valued logic utilized in soft computing to represent variables that contain a 

range of logic states. This differs from binary logic that represents only true or false states, as shown 

in Figure 3, where fuzzy logic allows us to represent concepts as partially true. This abstraction is 

similar to human logic and provides designers with a simple and effective means of mechanizing a 

task that a human operator can perform. 

 

(a) Binary Logic                                          (b) Fuzzy Logic 

 

Figure 3: Fuzzy and binary logic comparison 
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Rather than attempting to model a system mathematically, fuzzy logic implements a rule-based 

approach of the form IF X AND Y THEN Z. Such rules rely upon experience rather than technical 

understanding of a system to determine actions that must be taken. These rules are also imprecise 

but highly descriptive, providing a good approximation of human control logic. 

The fuzzy logic outcome is controlled through manipulation of the shape of each fuzzy logic rule 

(drawn as simplified triangles in Figure 3). The parameters that can be manipulated include the 

height, width, centre position and gradient of each membership rule. 

An example of a fuzzy logic controller is shown in Figure 4 where the input measurement of 

computational complexity error from the system is used to drive three fuzzy rules, represented by 

the three antecedent triangular membership functions. These three rules are used to describe the 

computational complexity of the audio coding algorithm as being TOO LOW, NORMAL or TOO HIGH. 

The fuzzy antecedent outputs for each possible output state are determined from the scaled sum of 

the membership functions for any given input. 

The fuzzy consequent membership functions are used to combine the fuzzy antecedent state 

conclusions into a single conclusion. This process can be performed by the fuzzy centroid algorithm 

which can determine the centroid position of the combined area of fuzzy membership functions. 

Once a single conclusion has been reached the output value must undergo defuzzification to obtain 

a crisp variable. This variable forms the output of the fuzzy logic controller that is used to control the 

system. In our example the crisp output defines the use of one of three possible error correction 

coding schemes.  
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Figure  4: Example of a three rule fuzzy logic controller used to select the appropriate error 

correction tool based upon the complexity of the multidimensional-adaptive audio coding 

algorithm 
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4.2 Q-Learning 

Q-Learning [6, 7] is a reinforcement learning technique [8]. The Q-learning agent operates by taking 

a given action in a given state. The states are learned as the algorithm operates through 

determination of the optimal solution to an action-value function. An advantage of Q-learning is its 

ability to take actions without knowledge of the system it is controlling. 

A Q-learning system divides the range of states that the controller can take into a finite set. The size 

of this state-space is determined by the number of input variables provided by the system and the 

number of quantized levels for each variable. Each state can perform a number of actions, where the 

action taken at a particular instant allows the system state to be modified. A state-action Q value for 

each state and action is used to maintain a reward value. The goal of the Q-learning algorithm is to 

maximize its reward by learning which action is optimal for each state. 

The optimal solution to the action-value function is found using the State-Action-Reward-State-

Action (SARSA) algorithm. SARSA will update the state-action Q value using an error signal that is 

modified according to a learning rate. 

 

 �(��, ��) = �(��, ��) + 
[��+1 + ��(��+1, ��+1) − �(��, ��)] (1) 

 

The reward of the action that has been taken is represented by �(� + 1). It is this reward that 

modifies the � state-actions to effect a learning process, whereby the action taken is determined by 

the state-action with the highest value. The learning rate is determined by 
. The discount factor 

0 < � < 1 determines the impact of future state-actions that will be taken, as the discount factor 

tends toward 1 the learning algorithm will become more opportunistic. In many applications the 

discount factor decays over time to ensure steady-state operation. 

4.3  Error Resilience Fuzzy Agent 

When combined, a fuzzy logic controller and a Q-learning algorithm can be used to provide an 

intelligent agent. As shown in Figure 5 this fuzzy agent can be used to monitor an unknown system 

and to determine which actions should be taken to achieve the required goals. 

 

 



White Paper  

 

13 | P a g e                                            

 

Reward calculation utilizes a knowledge of the current state of the system to describe the reaction 

of the fuzzy agent. This reaction 

what are deemed to be system failure conditions. The reward variable used to describe the fuzzy 

agent's reaction to the system state is referred to as 

The continuous state parameters of the system (computational complexity, computational latency, 

BER and bit burst error rate) are uniformly quantized to form an index into the finite state

the system. This index is used to form the next state of t

maintained by the fuzzy agent, as are the list of Q state

The last state of the fuzzy agent 

used to determine the appropriate actio

construct the consequent fuzzy membership functions. This allows us to reward a beneficial 

outcome such that the associated action is more likely to occur in the future. If the system behaves 

differently in future then the fuzzy consequent logic will adapt and a more appropriate action will be 

determined after an initial learning period.

 

                                © A P T  L I C E N S I N G  L T D

Figure  5: Fuzzy agent block diagram 

 

Reward calculation utilizes a knowledge of the current state of the system to describe the reaction 

of the fuzzy agent. This reaction is based upon the goals that have been set and an understanding of 

what are deemed to be system failure conditions. The reward variable used to describe the fuzzy 

agent's reaction to the system state is referred to as �(� + 1). 

The continuous state parameters of the system (computational complexity, computational latency, 

BER and bit burst error rate) are uniformly quantized to form an index into the finite state

the system. This index is used to form the next state of the fuzzy agent, �(� + 1

maintained by the fuzzy agent, as are the list of Q state-actions. 

The last state of the fuzzy agent �(�) and the corresponding state-action values 

used to determine the appropriate action to take. These state-action Q values are directly used to 

construct the consequent fuzzy membership functions. This allows us to reward a beneficial 

outcome such that the associated action is more likely to occur in the future. If the system behaves 

erently in future then the fuzzy consequent logic will adapt and a more appropriate action will be 

determined after an initial learning period. 
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Reward calculation utilizes a knowledge of the current state of the system to describe the reaction 

is based upon the goals that have been set and an understanding of 

what are deemed to be system failure conditions. The reward variable used to describe the fuzzy 

The continuous state parameters of the system (computational complexity, computational latency, 

BER and bit burst error rate) are uniformly quantized to form an index into the finite state-space of 

1). The state-space is 

action values �(�(�), �(�)) are 

action Q values are directly used to 

construct the consequent fuzzy membership functions. This allows us to reward a beneficial 

outcome such that the associated action is more likely to occur in the future. If the system behaves 

erently in future then the fuzzy consequent logic will adapt and a more appropriate action will be 
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Figure 6: The control process used to achieve error resilience in a multidimensional-adaptive audio 

coding algorithm 

We use fuzzy agents to control the complexity, computational latency, algorithmic latency and error 

resilience of our multidimensional-adaptive audio coding algorithm. The fuzzy agents are utilized in a 

sequential fashion, those agents that make critical decisions are applied last. The final fuzzy agent in 

our system is that which controls the error resilience, the process of which is described in Figure 6. 
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Figure  7: Average SNR and average compression ratio achieved with varying BER 

 

The error resilience fuzzy agent is provided with input measures of the complexity error, 

computational latency error, bit error rate (BER) and maximum length of bit burst errors. This agent 

also has access to decisions taken by preceding fuzzy agents in regards to actions that will impact on 

the performance of error resilience. For example, decisions to utilize Golomb-Rice VLC codes can 

have a detrimental effect on error resilience and audio quality if the transmission channel suffers 

from noise. 

The results achieved using this adaptive control scheme are shown in Figure 7. In this graph we have 

plotted the average signal-to-noise ratio (SNR) achieved by the multidimensional-adaptive audio 

coding algorithm when subjected to an increasing BER. The SNR is contrasted with the compression 

ratio of the quantized PCM samples. This graph indicates a graduated decrease in SNR and increase 

in redundancy whilst the BER is increased and a constant bit rate is maintained. The graph also 

indicates the positions where the control algorithm tends to utilize the Reed-Solomon and Golay 

coding schemes. The SNR rapidly deteriorates as the BER reaches approximately 4 %, a point 

corresponding to the error correction limits of Golay coding and a subsequent rapid increase in 

packet loss. 

 

 



White Paper  

 

16 | P a g e                                             © A P T  L I C E N S I N G  L T D  

 

 

Figure  8: Performance of adaptation and learning when error resilience and 

computational complexity are controlled 

 

The ability of the algorithm to adapt to varying computational complexity and error rates is shown in 

Figure 8. This graph describes the performance achieved when the algorithm must adapt and learn 

when the complexity must be controlled in conjunction with the error resilience capabilities. The 

error resilience of the lower complexity algorithms suffer to a greater degree at low error rates as 

more efficient quantization, entropy coding and APCM coding must be adopted to achieve the 

complexity performance goals whilst accommodating the additional processing load of error 

correction. When very high error rates are present the controller utilizes the simplest error 

correction and coding schemes in order to vastly reduce packet loss. This helps improve the average 

SNR quality, but significant quantization noise is present. 

5.0 Conclusion 

We have shown that a multidimensional-adaptive audio coding algorithm provides the ability to 

cognitively adapt to the presence of bit and packet errors. Whilst other conventional audio coding 

algorithms can utilize error control tools, these schemes typically have coarse-grained control and 

predetermined error control characteristics that cannot be easily altered or shaped. The proposed 

multidimensional-adaptive audio coding algorithm can modify the error control tools in a dynamic 

manner, according to external measures of channel noise and other system parameters. 
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We have also described how a fuzzy logic controller can be modified to use reinforcement learning 

to create an intelligent control system. This intelligent agent forms the controller within a 

multidimensional-adaptive audio coding algorithm. With no knowledge of the system into which it is 

placed this audio compression algorithm is capable of adapting its structure to achieve a high level of 

error resilience, whilst maintaining other performance goals such as computational complexity. 

6.0 Further Work 

The multidimensional audio coding algorithm will be further extended and enhanced as part of a 

continuing industrial research program. Areas of interest for coding tools include error-resilient 

quantization and coding techniques. As additional coding tools are researched the adaptive learning 

mechanism will also continue to be improved. This adaptive learning technique requires us to find a 

solution to a global optimization problem, i.e. finding a good approximation to the global minimum 

of a given function in a large search space. Other techniques that could be used here include 

evolutionary algorithms such as genetic algorithms and tabu search. 
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